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Abstract—Thanks to the ubiquitousness of Wi-Fi access points
and devices, Wi-Fi sensing enables transformative applications
in remote health care, home/office security, and surveillance, just
to name a few. Existing work has explored the usage of machine
learning on channel state information (CSI) computed from Wi-
Fi packets to classify events of interest. However, most of these
algorithms require a significant amount of data collection, as
well as extensive computational power for additional CSI feature
extraction. Moreover, the majority of these models suffer from
poor accuracy when tested in a new/untrained environment.
In this paper, we propose ReWiS, a novel framework for
robust and environment-independent Wi-Fi sensing. The key
innovation of ReWiS is to leverage few-shot learning (FSL) as
the inference engine, which (i) reduces the need for extensive
data collection and application-specific feature extraction; (ii) can
rapidly generalize to new environments by leveraging only a few
new samples. Moreover, ReWiS leverages multi-antenna, multi-
receiver diversity, as well as fine-grained frequency resolution,
to improve the overall robustness of the algorithms. Finally, we
propose a technique based on singular value decomposition (SVD)
to make the FSL input constant irrespective of the number of
receive antennas. We prototype the ReWiS using off-the-shelf
Wi-Fi equipment and showcase its performance by considering
a compelling use case of human activity recognition. Thus, we
perform an extensive data collection campaign in three different
propagation environments with two human subjects. We evaluate
the impact of each diversity component on the performance
and compare ReWiS with an existing convolutional neural
network (CNN)-based approach. Experimental results show that
ReWiS improves the performance by about 40% with respect
to existing single-antenna low-resolution approaches. Moreover,
when compared to a CNN-based approach, ReWiS shows a 35%
more accuracy and less than 10% drop in accuracy when tested
in different environments, while the CNN drops by more than
45%. To allow reproducibility of our results and to address the
current dearth of Wi-Fi sensing datasets, we pledge to release our
60 GB dataset and the entire code repository to the community.

I. INTRODUCTION

Wi-Fi has become one of the most pervasive wireless tech-
nologies ever invented. Indeed, today Wi-Fi is ubiquitous and
provides wireless connectivity to almost any device of com-
mon use, including smartphones, tablets, laptop computers,
and wearable devices. Just to give an idea of how fast Wi-Fi
is growing, Cisco forecast that Wi-Fi 6 hotspots are expected
to grow 13 fold from 2020 to 2023 [1]. Given their ever-
increasing ubiquitousness, significant research efforts have

investigated the usage of Wi-Fi waveforms to perform device-
free classification, also called Wi-Fi sensing. An excellent
survey on the topic can be found in [2]. In a nutshell, Wi-Fi
sensing is based on passive monitoring of the changes in the
channel frequency response (CFR) produced by the presence
of scatterers located between the Wi-Fi transmitters and the
Wi-Fi receivers. These sudden changes in CFR can be evalu-
ated by estimating the channel state information (CSI) through
the pilots contained in every Wi-Fi frame preamble [3]. This
way, highly-innovative applications such as human activity
recognition, remote health monitoring, and surveillance can
be implemented [4]. Attesting to the relevance of these appli-
cations, in September 2020, IEEE 802.11 has approved a new
technical group (TG) called IEEE 802.11bf [5]. According to
the website, TGbf will define modifications to state-of-the-art
IEEE 802.11 standards at both the Medium Access Control
(MAC) and physical layer (PHY) to accommodate sensing
operations between 1 GHz and 7.125 GHz, as well as above
45 GHz (i.e., millimeter-wave frequencies).
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Fig. 1: High-level overview of ReWiS.

As critical Wi-Fi sensing applications come into the market,
it becomes imperative to improve the robustness of Wi-Fi
sensing operations to noise and interference, as well as their
amenability to generalize to multiple operational environ-Approved for Public Release; Distribution Unlimited: AFRL-2021-3408



ments. For example, if a sensing application fails to detect
intruders in a smart home scenario, or stops working when
deployed in a new home, it may have severe repercussions
in both commercialization efforts as well as the well-being of
the final users. Although existing work – discussed in detail
in Section II – has proposed CSI-based sensing, they fail to
generalize to multiple environments and do not address how
to improve the robustness of the algorithms.

To address the existing research gap, in this paper we
propose ReWiS, a novel framework leveraging multi-antenna,
multi-frame, multi-receiver CSI data to improve the robustness
of Wi-Fi sensing operations. Figure 1 shows a high-level
overview of ReWiS and its key operations. The fundamental
difference of ReWiS with respect to existing work is that
instead of relying on traditional convolutional neural network
(CNN)-based learning [6, 7], ReWiS tackles the key prob-
lem of generalization through an approach based on few-
shot learning (FSL), which (i) reduces the need of extensive
data collection; (ii) allows ReWiS to rapidly generalize to
new tasks by only leveraging a few new samples. Moreover,
ReWiS leverages spatial diversity (i.e., multiple receivers and
multiple antennas per receiver), time diversity (i.e., multiple
CSI measurements), and increased subcarrier resolution to
significantly improve the robustness of the sensing process.
Although existing work has proposed FSL to address CSI
learning [8], it is based on application-dependent embedding
extraction using an long short-term memory (LSTM)-based
technique called matching network (MatNet) [9], which ul-
timately limits its applicability to a single application and
adds to the computational complexity of the approach. In this
work, we rely on a new concept called prototypical networks
(ProtoNets) [10] to do away with application-specific feature
extraction, thus improving generalizability and computational
burden.

This paper makes the following novel contributions:

• We propose ReWiS, a novel framework for robust and
environment-independent CSI-based Wi-Fi sensing (Section
III). The core design principles behind the ReWiS are to
(i) leverage multi-antenna, multi-receiver diversity, as well
as fine-grained frequency resolution to improve the overall
robustness of the algorithms; (ii) leverage a customized version
of FSL to (a) remove the need of application-specific feature
extraction; (b) help generalize to new environments by only
leveraging a limited number of new samples (Section III-A).
We also propose a technique based on singular value decom-
position (SVD) to make the FSL input constant irrespective
of the number of receive antennas and window size (Section
III-B). To give a perspective, in our dataset, we reduce the
input size by about 80% of the original size;

•We prototype ReWiS using off-the-shelf Wi-Fi equipment
and showcase its generalizability to new environment by
considering human activity recognition as a use case (Section
IV). We perform an extensive data collection campaign in three
different propagation environments with two human subjects
(IRB approval available upon request). We evaluate the impact

of each diversity component on the performance and compare
ReWiS with a CNN-based approach [6]. Experimental results
(Section V) show that the ReWiS improves the performance
by about 40% with respect to existing single-antenna low-
resolution approaches. Moreover, when compared to a CNN-
based approach, ReWiS shows 35% more accuracy and less
than 10% drop in accuracy when tested in unseen environ-
ments, while the CNN performance drops by more than 45%.
To allow full reproducibility of our results, the ReWiS and
dataset can be found at https://github.com/niloobah/ReWiS.

II. BACKGROUND AND RELATED WORK

In this section, we present some background notions on Wi-
Fi sensing, as well as presenting related work and highlighting
the novelty of this paper. First, we summarize Wi-Fi sensing
and channel state information (CSI) learning in Sections II-A
and II-B. Then, we summarize CSI collection methodologies
and current CSI dataset availability in Section II-C.

A. Wi-Fi Sensing

The main idea behind Wi-Fi sensing is that the presence of
moving objects alters the propagation environment throughout
time and frequency. Thus, information on the presence/motion
of objects in the environment can be captured by analyzing the
received Wi-Fi signal. Thus, Wi-Fi sensing has been utilized in
a wide range of sensing applications such as smart homes [11],
device-free surveillance [12], activity recognition [7, 13, 14],
and healthcare [15, 16] applications. For a comprehensive sur-
vey on the topic, please refer to [2]. Wi-Fi sensing approaches
can be categorized into three main groups, (i) received signal
strength (RSS), (ii) passive Wi-Fi radar (PWR) and (iii) CSI
sensing. RSS sensing is performed through measuring RSS per
packet, thus, is a coarse-grained parameter and provides a low-
resolution information [13]. Although PWR sensing relies on
calculating the difference between transmit and receive signal,
its accuracy is highly dependant on the location of the bistatic
[14]. Conversely, thanks to the new methodologies, CSI can be
captured in real-time over up to 8 antennas and up to 160MHz
channels for each packet [17], which provides us with fine-
grained information in both time and frequency domains.

B. CSI Learning

Deep learning has been proved to be an effective tool for
accurate Wi-Fi CSI sensing. To improve the performance of
Wi-Fi sensing in terms of accuracy, some approaches have
focused on preprocessing and feature extraction [15, 16, 18–
20], while others applied more sophisticated machine learning
(ML) models [6–8, 21, 22]. However, most of these approaches
are unable to generalize and their performance deteriorates
when tested in an unseen environment [7, 23]. Commercial
CSI sensing algorithms are trained offline and the source
model is expected to be adapted to target environments rapidly
given a limited number of samples. To this end, generalizing
the model to different environments is a crucial factor for
the success of Wi-Fi sensing. A very limited number of
existing papers have focused on this aspect of CSI sensing
[7, 8, 22, 23].
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Authors in [7] generalize to a broader range of features
by designing a very sophisticated deep learning algorithm
using attention-based bi-directional long short-term memory
(ABLSTM) to extract significant sequential features from raw
CSI measurement. To generalize to new users, CsiGAN in [22]
leverages generative adversarial network (GAN) to generate
artificial examples to account for the left-out user whose
CSI data is not available in the training examples of the
deep learning model. Although these frameworks successfully
improved the accuracy of predictions, despite their compu-
tationally intensive training procedure, they fall short when
it comes to generalizing to new environments. For example,
as attested in [7], the accuracy of the model reduces to 32%
when tested in an untrained environment. The authors in [23]
suggested extracting the power distribution of different ges-
tures’ velocities from the Doppler spectrum. Then, a temporal
learning model is applied to learn the extracted features and
perform domain-independent gesture recognition. However,
these approaches require extensive data pre-processing, careful
feature extraction, and an abundance of training examples. For
example, experimental results in [23] show that the accuracy of
the algorithm drops significantly when the number of human
subjects and training samples decreases.

Conversely, few-shot learning (FSL) is a novel ML tech-
nique that has shown remarkable results in generalizing from
a few examples and classifying examples from previously
unseen classes given only a handful of training data. Thanks to
this unique feature, FSL can be an exceptional candidate for
CSI learning problems. A recent work [8] addresses human
activity recognition through FSL. A CSI feature extraction
method along with a matching network (MatNet) [9] is used
to remove the environment-dependent data and to make ac-
curate predictions in new environments. However, MatNets
require designing application-dependent embedding functions,
through long short-term memory (LSTM) and attention-based
LSTM networks. This adds to the computational complexity
of the algorithm and limits its generalizability to only certain
applications. To address these challenges, we use state-of-the-
art prototypical network (ProtoNet) [10], which (i) achieves
the same level of performance with a simpler learning struc-
ture, and (ii) can be generalized to a variety of CSI sensing
applications.

C. CSI Collection and Datasets Availability

Reliable and high-resolution CSI datasets are key enablers
of any learning-based CSI sensing applications. In Wi-Fi,
CSI data can be estimated at the receiver over all subcar-
riers through pilot symbols contained in the physical layer
(PHY) preamble. Being computed at the PHY, CSI is not
accessible by the end-user through normal network interface
cards (NICs), which makes CSI acquisition a challenging task.
Some software-defined radio (SDR) Wi-Fi implementations do
exist [24], but to the best of our knowledge, they are limited
to 20 MHz bandwidth only (IEEE 802.11 a/g/p). For this
reason, the majority of research works have used 802.11g and
802.11n standards for data collection, which limits the total

bandwidth to 40 MHz [25]. To address this shortcoming, we
leverage the recently released Nexmon CSI-extractor tool [17]
to obtain CSI from IEEE 802.11ac transmissions at 80 MHz
of bandwidth. By leveraging Multiple Input, Multiple Output
(MIMO), we collected CSI with four receiver antennas. In
Section V, we show that increasing the number of antennas,
receivers, and subcarriers over which the CSI data is measured
increases the CSI sensing performance significantly.

To the best of our knowledge, only a few CSI sensing
datasets are publicly available. FalldeFi [26] is a fall detection
dataset consisting of information collected in 6 rooms. human
activity recognition (HAR) dataset is collected in [27] and [?
] where measurements are collected inside 1 and 3 rooms,
respectively. In all cases, 1 transmitter and 1 receiver are uti-
lized. The size of each instance in all datasets is (2000, 3, 30),
representing 2000 CSI matrices with three receive antennas
and 30 subcarriers measured in two seconds. In this paper, for
the first time, we collect a large-scale dataset containing multi-
antenna (up to 4) multi-receiver (up to 3) fine-grained (up to
242 subcarriers) CSI readings from multiple environments and
activities, which we will release to the community.

III. THE REWIS FRAMEWORK

This section describes the proposed ReWiS framework for
robust CSI sensing. Our framework’s core focus is on (i)
reducing the cost of data acquisition and labeling by adopting
customized ProtoNet to learn and generalize with limited
data; (ii) reducing the complexity of the learning algorithm
and data pre-processing while maintaining the accuracy by
collecting data over multiple antennas, multiple receivers at
different locations and high-resolution CSI data over large
channel bandwidth. We first explain the core design principles
in Section III-A. Then in Section III-B, we describe the ReWiS
CSI processing procedure. Finally, we present our FSL-based
technique for robust CSI learning in Section II-B.

A. ReWiS Robust Design Principles

The ReWiS is a passive sensing system leveraging CSI
data computed through listening to ongoing traffic exchange
between Wi-Fi devices. The key motivation behind the ReWiS
is that the accuracy of the CSI computation depends on the
coherence time of the channel, the received power of the
transmitted signal, interference from other transmissions and
background noise, among other factors. For this reason, the
ReWiS leverages multiple receivers and multiple antennas to
collect robust CSI data and thus increases the accuracy. Below,
we detail the impact of each factor in increasing the accuracy
of CSI sensing.

(1) Spatial diversity. Due to the presence of multiple
reflectors and scatterers in indoor environments, there is a
significant probability that the communication channel is in
a deep fade, and thus, that the CSI measurement may be
erroneous. This motivated us to increase the reliability of
the CSI sensing framework through adding spatial diversity.
Since we do not have any control over the final configuration
of Access Points (APs) in the target environment, we must
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ensure that the Orthogonal Frequency Division Multiplexing
(OFDM) symbols for CSI estimation pass through multiple
signal paths, each of which fades independently, guaranteeing
that reliable CSI measurement is possible even if some paths
are in a deep fade. Therefore, in ReWiS we incorporated two
types of diversity, namely, macro-diversity and micro-diversity.

(a) Micro-diversity. ReWiS improves performance by col-
lecting CSI data with multiple receive antennas. As long as the
antennas are placed sufficiently far apart, this would create in-
dependent propagation paths between different antenna pairs,
thus reducing the chance of deep fade significantly. In indoor
environments, the channel decorrelates over shorter spatial dis-
tances [28], and the typical Wi-Fi router’s antenna separation
of the half to one carrier wavelength is sufficient (about 3-6
cm at 5GHz band). To make ReWiS compatible with legacy
Wi-Fi systems, we chose to leverage one spatial stream and
use the full diversity on the receiving side by activating four
receive antennas. Our experimental results in Table I show
that micro-diversity helps increase classification accuracy
by up to 16% with respect to a single-antenna system, as
micro-diversity improves robustness to multipath fading and
interference.

(b) Macro-diversity. ReWiS leverages the usage of multiple
receivers to further improve diversity. Indeed, modern indoor
Wi-Fi networks commonly leverage multiple APs to increase
the wireless range, boost coverage, ensure reliability and
support a large number of wireless applications/devices. Thus,
ReWiS collects CSI simultaneously from multiple receivers.
The experimental results in Table I show that macro-
diversity improves the prediction accuracy by 38% with
respect to a single-receiver system, as the receivers are
located several wavelengths apart from each other. On the
other hand, macro-diversity implies that the data from multiple
receivers must be aligned both in time and frequency domains.

(2) Time diversity. The Wi-Fi propagation environment
is subject to almost continuous change, mainly owing to
the movement of obstacles between the transmitter and the
receiver, as well as the presence of noise and interference
from overlapping channels. For this reason, to improve robust-
ness, ReWiS leverages the usage of multiple, subsequent CSI
readings to boost the classification accuracy. To compensate
for the increase in complexity, we use a novel and custom-
tailored technique based on singular value decomposition
(SVD), which is explained in Section III-B (Step 4: Dimension
reduction). We show that our technique helps reduce the
input size by about 80%. Moreover, by trading off delay for
accuracy (the more CSI readings, the more delay), we show
in Figure 2 that time diversity increases accuracy by up
to 35%, as the number of CSI readings fed to the learning
model help counteract the adverse channel conditions.

(3) Subcarrier resolution. CSI measurement at low channel
bandwidth cannot resolve multipath propagations and thus
limiting many CSI sensing applications that require higher pre-
cision [15, 29]. Inevitably, either feature extraction algorithms
have been utilized or sampling frequency has been increased,
to compensate for the low resolution in the frequency domain.

In order to avoid time- and computational- intensive data
pre-processing for complex feature extraction and efficient
sampling, we proposed using the Nexmon tool [17] to extract
high-resolution 802.11ac CSI data over the 80 MHz wide
channel with 242 subcarriers. The results in Figures 7 and
8 show that using higher subcarrier resolution improves
prediction accuracy by up to 19%, as finer-grained CSI data
is fed to the learning model.
B. ReWiS CSI Processing

We now describe the procedure ReWiS converts the unpro-
cessed CSI measurements into a dataset used as the input of the
ML algorithm. We term this processing CSI data preparation,
and is depicted in Figure 2.
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Fig. 2: ReWiS CSI dataset preparation and dataset construction.

As explained earlier, ReWiS leverages multiple receivers
with multiple antennas, as well as fine-grained CSI estimated
by the Wi-Fi OFDM receiver. In an OFDM system, the digital
data stream is modulated over multiple overlapping, closely
spaced orthogonal subcarriers to transmit data in parallel. Let
us assume P packets are captured during the data collection
campaign. In a M×N MIMO OFDM system with M transmit
antennas, N receive antennas and S subcarriers, the extracted
CSI matrix between the transmit antenna m and the receive
antenna n located on receiver r can be written as

Hm,n
r =



hm,n1,1 . . . hm,n1,s . . . hm,n1,S
...

...
...

hm,np,1 . . . hm,np,s . . . hm,np,S
...

. . .
...

. . .
...

hm,nP,1 . . . hm,nP,s . . . hm,nP,S

 ,
1 ≤ n ≤ N

1 ≤ m ≤M ,

where the element hm,np,s denotes the amplitude and phase
information of the CSI obtained from p-th packet, the s-th
OFDM subcarrier over the channel from the transmitter m
to the receiver n. For example, when P = 100 and 80 MHz
channels, the matrices Hm,n

r have P×S = 100×242 elements.
Step 1. Micro alignment. During our experiments, we

noticed that in some instances, CSI packets are not captured
by all antennas. In that case, those CSI measurements are
identified and removed.

Step 2. Macro alignment. In addition to antenna-level
alignment, the data collected from different receivers are
aligned to ensure that each CSI element collected over dif-
ferent receivers represents the same time and frequency do-
main channel measurements. To this end, the Wi-Fi sequence
number is used to match data from different receivers.
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Step 3. Segmentation and integration. At this step, first,
to remove noise and unwanted amplification, the CSI elements
are normalized by the mean amplitude over all subcarri-
ers. Next, the CSI measurements from each antenna, Hm,n

r

is divided into fixed-size data-segments by sliding a non-
overlapping window through the time-domain measurements.
The data-segments, denoted by Ĥm,n

r , are matrices of dimen-
sion W × S, where W is the number of OFDM packets in a
window. Further, measurements from all antennas on the same
receiver are stacked into one matrix to form a data-frame as

Hr =
[
Ĥm,1
r , · · · , Ĥm,N

r

]T
(1)

where data-frame Hr = HA
r e

jHφ
r is a complex matrix. Note

that the transmit antenna index m is omitted in the interest
of readability. Moreover, both amplitude matrix HA

r = ‖Hr‖
and phase matrix Hφ

r = ]Hr can be utilized for CSI sensing
individually. For notation brevity, from here on, Hr is a real
matrix representing both HA

r and Hφ
r matrices.

Step 4. Dimension reduction. Data-frames with size
N × W × S may be too large to be fed into the learning
module. To improve the performance and processing time
of the learning algorithm, data-frames are minimally pre-
processed with singular value decomposition (SVD), which
is a powerful tool to eliminate the less important variables of
large-size data matrices and produce an approximation with
lower dimensions. To preserve the subcarrier resolution, we
only reduce the number of features in the time domain, i.e.,
CSI packets. By using SVD, the data-frame matrix in (1) is
factored into the product of three matrices as HT

r = UΣV T ,
where diagonal values of Σ contains the singular values of
the data-frame and U and V are known as the left- and right-
singular vectors.

The key to understanding SVD functionality is that by
multiplying HT

r with the left-singular vector V , time-domain
measurements over each subcarrier is mapped to the subcarrier
space, to preserve only the useful packets over each subcarrier.
Using eigenvalue analysis, we noticed that singular value
contributions of the data-frames depend on the type of activity
and the environment. Hence, we utilize all singular values to
maintain the ReWiS generalizability. The compact data-frame,
H′ with dimension S × S is calculated as

H′r = HT
r × V. (2)

Further, to extract more features from the compact data-frame,
the linear correlation among subcarriers is extracted simply by
calculating the Pearson Correlation Coefficient (PCC) of the
compact data-frame [30]. These correlation matrices, denoted
as ρH with dimension S × S are the input of the ReWiS
learning module. Therefore, we are able to reduce the di-
mensionality from N ×W × S to S × S, which makes the
input constant with the window size and the number of receive
antennas. For example, since in our experiments we used 4
antennas and a window size of up to 300, we are able to reduce
the input size by about 80%.

C. ReWiS Learning Models

We first discuss preliminaries about the FSL and related
models. Then, we present the ReWiS CSI learning procedure.

FSL and ProtoNet. Traditionally, supervised learning ap-
proaches require a large labeled dataset for training. In appli-
cations such as Wi-Fi sensing, collecting and labeling large
datasets may be challenging, thus the labeled data is severely
limited [22]. For this reason, ReWiS uses few-shot learning
(FSL), where the objective is to quickly adapt to new/unseen
data given a limited number of samples. The purpose of FSL
is to train a model with high accuracy when the data of the
target task is small by using some kind of prior knowledge.
In practice, FSL is useful when training examples are hard to
find, or the cost of labeling is high [9].

Specifically, in K-way-N -shot learning, the model is trained
through a set of sampled mini-batches of classes and data
points, called training tasks. Each task is divided into a query
set and limited support set with K different classes and N
labeled examples (shots) of each class (typically 1-5). The
small training set requires the fast adaptability of the model.
The query set is classified using the knowledge from the
support set. The performance of the model in generalizing to
new classes is evaluated by the average test accuracy across
many K-way-N -shot test tasks containing unseen/new classes.
In a nutshell, by learning a generalizable metric space, FSL
learns how to classify given a set of training tasks, and exploit
this knowledge to classify new classes. It is worth noting
that in CSI sensing applications a new environment can be
interpreted as a new class. To illustrate this point, Figure
3 shows CSI measurements of empty rooms in 3 different
environments. Although all three are labeled as empty room,
it can be seen that they show distinct patterns due to the unique
propagation profile of each environment.
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Fig. 3: CSI measurements of an empty room in the data collection environ-
ments described in Figure 5.

Different FSL approaches, such as MatNet [9], meta-
learning [31] and ProtoNet [10], propose different metric
spaces in which classification can be performed. Among these
methods, ProtoNet applies a simple yet effective inductive
bias in the form of class prototypes that leads to achieving
impressive few-shot performance and reducing the network
complexity. Next, we briefly explain the fundamentals of the
ProtoNets.

ProtoNet model. During e-th training episode, a training
task comprising a mini-batch of classes and data points are
sampled as Te = {D1, . . . ,DK}. Dk = {(xi, yi)|yi = k}
denotes the set of data points labeled with class k, where
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each xi is a data point and yi ∈ {1, . . . ,K} is the cor-
responding label. Next, Te is further divided into support
and query sets, i.e., Te = {Se,Qe}. A subset of each
class set, Dk with N instances is selected as the support
set: Se = {(s1, y1), . . . , (sN , y1), . . . , (sN , yK)} and the
rest of the examples are used as the query set, Qe =
{(q1, y1), . . . , (qL, y1), . . . , (qL, yK)} where L is the number
of samples in the query set.

q

p1 p2

p3p4

xi pk

Embedded 
Support

 Network for 
class k

Fig. 4: Embedded Prototype Network.

To avoid suffering from high variance caused by the high
dimensionality of the xi, the support and query data are
mapped into a feature space by embedding function fθ(xi)
with cleanable parameters θ, as shown in Figure 4. Learning
a proper embedding model is a paramount task [32] that will
be discussed later in-depth in this section.

The principle idea behind ProtoNet is that data points cluster
around a single prototype representation for each class that
is simply the mean of the embedded support samples of
each class [10]. Therefore, the prototype of each class, pk,
is computed as

pk =
1

|Dk|
·

∑
(si,yk)∈Dk

fφ(si) (3)

These prototypes can be used to classify the query samples,
as illustrated in Figure 4. For a query point q, the ProtoNet
produces a distribution over classes using a softmax over
distances to the prototypes in the embedding space as

L(Qe) =
−1

|Qe|
∑

(qi,yi)∈Qe

log

(
exp(−‖fθ(qi)− pk)‖2)∑
k′ exp(−‖fθ(qi)− pk′‖2)

)
.

(4)

The ProtoNet is trained through minimizing the loss func-
tion via stochastic gradient descend (SGD) over training
episodes. At test time, sample xi is classified using the nearest-
neighbouring prototype computed from the support set of the
test episode as y(xi) = arg minj∈{1,...,K} ‖xi − pj‖2. It is
worth noting that ReWiS adopts Euclidean distance rather than
cosine similarity used in [8] as it is shown through extensive
experiments that it outperforms other distance metrics [10].

Learning embedding model fθ. The ProtoNet’s goal is to
learn a transferable embedding that generalizes to new tasks.
Previous work [8] has adopted a MatNet and employed two
distinct deep neural networks (DNNs) for query samples and
support samples. In addition, attention-based LSTM is used to
encode a full context embedding of support samples. Unlike
[8], we use only one embedding function for both support

and query sets rather than multiple embedding functions.
This reduces the number of hyper-parameters, simplifies the
learning process of CSI sensing and reduces the time- and
computational- complexity. In addition, learning the embed-
dings according to the dataset makes ReWiS application-
independent. Inspired by [32], ReWiS learns the embedding
function fθ by training a neural network on the entire training
set, i.e., we merge all the support mini-batches into a single set
as S = ∪{S1, . . . ,Se, . . . ,SE}, where E is the total number
of training tasks. The embedding model parameters is then
achieved by

θ = arg min
θ
Lce(S; θ), (5)

where Lce denotes the cross-entropy loss between predictions
and ground-truth labels.

D. ReWiS Training and Inference

ReWiS learns from the training dataset collected in the
source environment to perform the related CSI sensing appli-
cation in the target environment. The dataset of each receiver
r consists of CSI data-frames of size S×S and corresponding
labels, as explained in Section III-B. Using these datasets, a
learning model is trained for each receiver. The training dataset
is sampled into mini-batches of training and testing tasks. Each
task includes a support and a query set of K classes and N
examples (shots) as explained in Section III-C.

Training. First, the support mini-batches are fed into an em-
bedding learning module to train a proper embedding function.
The embedding is trained using a convolutional neural network
(CNN) with four convolutional blocks. Each block comprises
a 64-filter 3×3 convolution, batch normalization layer [33], a
ReLU nonlinearity, and a 2× 2 max-pooling layer is applied
after each of the blocks. Finally and a global average-pooling
layer is on top of the fourth block to generate the feature
embedding. All of our models were trained via SGD optimizer
with Adam [34]. The learning rate is initialized as 10−3 and is
cut in half every 2000 episodes. Following learning the proper
embedding model, the learning proceeds by minimizing the
loss function in (4).

Testing. During testing time, the algorithm only requires N
samples (also called shots) of the desired activities to function
in the target environment. In a real-world scenario, this can
be realized through a mobile application installed on the end-
users smartphone. As a part of the initialization process, the
user is asked to perform some activities for a short amount of
time (less than a minute) and label the activities. The learning
algorithm utilizes the provided labeled data by the user as
the support set of the testing task and adapts to the target
environment. Note that initialization and collecting data in the
target environment is a common practice of commercial ac-
tivity recognition tools, such as Qualcomm’s positioning units
[35], and does not impact the practicality of this approach.
As explained earlier, there exists a trained model per receiver.
At testing time, each model returns a probability distribution
vector over all classes as Pr = [p1, . . . , pk]. By defining R as
the number of receivers, the final decision on the label of a data
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point y is made through the superposition of all probability
vectors and finding the maxima y = arg maxk

∑R
r=1 Pr.

IV. PROTOTYPE AND EXPERIMENTAL DATA COLLECTION

To demonstrate the robustness of ReWiS in generalizing to
new environments, we designed a testbed with commercially-
available off-the-shelf Wi-Fi devices. We evaluate the perfor-
mance of ReWiS by building a prototype and analyzing a use-
case application of CSI sensing, i.e., activity recognition. First,
we present our evaluation methodology including environment
setup, measurement tools, data collection campaigns, and
training/testing procedure. Then, we show our results which
investigate the following crucial aspects:

1) The role of ProtoNet in enabling ReWiS generalizing to
unseen environments.

2) The impact of macro-, micro- diversity, and subcarrier
resolution on the accuracy of ReWiS predictions.

Note that our main goal is to demonstrate the ability of
ReWiS in generalizing to new environments, not recognizing
human activities. Thus, we suffice our experiment to only four
activities, namely empty room, walking, jumping, and standing,
each of which has its own specific challenges. Notice that even
identifying an empty room is not a trivial task, as changes in
environment/time of experiment lead to significant alterations
in the CSI measurements as shown in Figure 3. Considering
various activities with more complexities will be left to our
future work. The implementation of the ReWiS prototype
requires a pair of Wi-Fi transmitter-receiver to establish a
traffic link, in addition to a set of Wi-Fi routers equipped with
an extraction tool to process the CSI data. In the following,
we detail the ReWiS components as well as the experiment
setup.
A. CSI Extraction, Hardware and Testbed Setup

We have used Nexmon CSI [17], the state-of-the-art CSI
extraction tool to collect CSI measurements using Asus RT-
AC86U Wi-Fi routers. In a real-world scenario, ReWiS relies
on already existing Wi-Fi transmissions. In our controlled
experiment, we dedicated a pair of transmitter-receiver to
emulate the traffic generation. To establish the Wi-Fi link, a
Netgear R7800 Wi-Fi router with a Qualcomm Atheros chipset
is used in AP mode. An off-the-shelf laptop acts as the client.
The Hostapd tool [36] is utilized on the AP to ensure that the
traffic is generated using 802.11ac at the desired bandwidth.
UDP packets between the AP and the client are generated with
a rate of 1 Mbit/s via iperf3 tool [37] and transmitted through
a single spatial stream.

To implement our prototype ReWiS, we have used 3 Asus
RT-AC86U WiFi routers, each equipped with N = 4 antennas.
The Asus routers extract the CSI packets using the Nexmon
firmware, by computing the CSI on the UDP frames transmit-
ted from the AP to the client. CSI is computed at a rate of 100
Hz. The Nexmon tool enabled us to collect 802.11ac channel
measurements at 5GHz with 20 and 80 MHz bandwidth over
S = 52 and S = 242 subcarriers. The measurements at 20
MHz are used to evaluate the effectiveness of higher subcarrier

resolutions as compared with legacy CSI measurements. Note
that originally 802.11ac 20 MHz and 80 MHz channels consist
of 64 and 256 subcarriers. However, in our measurements, we
discarded the CSI from the guard and null subcarriers as they
contain arbitrary values [17].

To evaluate the capability of ReWiS to generalize to
different environments, we performed CSI measurements in
three different environments. Specifically, the measurements
are carried in an office area E1, a meeting room E2, and a
classroom E3 on different days and times. We carefully picked
the environment with exclusive furniture arrangements, size,
and construction material to ensure that the target environ-
ments are mutually exclusive from the source environment
in terms of propagation characteristics. However, visually,
E1 is more similar to E3 than E2. Figure 5 shows the
environment layout, as well as the position of AP, client
and CSI sniffers. The position of ReWiS components may
influence the test outcome. Therefore, we attempted to loosely
change the configuration in different environments and design
the testbed to align with realistic home/office HAR scenarios
and be close to those used in other CSI activity recognition
studies [22, 38].

B. Data Collection and Dataset Preparation

The two subjects involved in the experiments were in-
structed about the type, duration, and location of the activities
including jumping, walking, and standing. Each measurement
campaign involves 180 seconds of data collection for each
activity performed by two people (IRB approval available
upon request). The measurements are repeated 10 times with
a time interval of at least 2 hours in between measurements.
The collected raw data is processed by applying the CSI
data preparation algorithm presented in Section III-B. Upon
aligning the data collected from 4 antennas of each Asus
router, a window size of W = 300 samples (tantamount
to 3s) is used to segment the raw data into data-segments.
Further, the data-segments are integrated using (1) to form
the CSI data-frame Hr. As a result, through the explained
measurement campaign with M = 1 spatial stream, N = 4
receive antennas, the CSI data-frame Hr at 80 MHz is a
matrix of size 1200×242. Thanks to the dimension reduction
algorithm proposed in Section III-B, the size of the data-frame
is reduced to 242 × 242, which is about 80%. We collected
data in three different propagation environments, which are
shown in Figure 5.

Environment E1 is selected as the source environment,
while E2 and E3 are considered as the target environments,
and their dataset is entirely used for testing purposes. The
ReWiS learning algorithm presented in Section III-C has been
trained using the prepared dataset, where 70% of the dataset
is used for training while the remainder is used for testing
and evaluation. Unless otherwise mentioned, the model is
trained using 4-way-5-shot training tasks, i.e., 4 classes and 5
examples in both support and query tasks. The accuracy of the
algorithm is tested through sampling 1000 randomly generated
testing tasks from the test sets. We have used two measures to
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Fig. 5: Data collection and testing environments used in our experiments. We
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report the results, namely accuracy and F1 score. The accuracy
refers to the correct predictions divided by total predictions,
while the F1 score is defined as

F1 score = 2× Precision · Recall
Precision + Recall

where Recall := TP/(TP + TN) and Precision := TP/(TP +
FP). TP, TN and FP stand for true positive, true negative and
false positive, respectively.

V. PERFORMANCE EVALUATION

In this section, we show the end-to-end performance eval-
uation of ReWiS. Figure 6 shows the overall performance of
ReWiS in terms of accuracy of predictions with 3 receivers,
each with 4 antennas, at 80 MHz channels when tested in
environment E2 and E3. It can be seen that ReWiS not only
learned very well from the source dataset but successfully
generalized to the target environments, as it is able to achieve
accuracy close to 100% in unseen environments by taking ad-
vantage of all three components of macro/micro diversity and
subcarrier resolution, in addition to implementing ProtoNet
with modified embedding learning.
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Fig. 6: The performance of ReWiS in generalizing to E2 and E3 environment,
with 3 receivers, 4 antennas, 80 MHz.

1) Impact of Macro- and Micro-diversity: Table I shows
the impact of macro- and micro- diversity on the accuracy
of the predictions. It can be seen that increasing the number
of antennas from 1 to 4 increases the accuracy by 12% and
10% in environments E2 and E3, respectively. In addition,
increasing the number of receivers from 1 to 3 improves
the accuracy by 14% and 18% in environments E2 and E3,
respectively. By looking closely at these results, we can see
that in general, micro-diversity (number of antennas) improves
the accuracy of in-place activities, such as jump and standing,
while macro-diversity improves the accuracy of walking. In-
terestingly, macro-diversity helps discriminate walking from
standing and jumping and micro-diversity increases the preci-
sion of differentiating jumping from standing.

2) Impact of Subcarrier Resolution: Figures 7 and 8 show
the impact of subcarrier resolution and the number of antennas
by comparing the confusion matrices of ReWiS in 20 MHz
and 80 MHz channels, respectively with 1 receiver and 3
receivers. It can be seen that at 20 MHz with 1 receiver the
accuracy diminishes by close to 20% in the worst case. The
number of receivers improves the performance, but we still
notice that higher resolution implies 6% better accuracy. In
general, differentiating standing from jumping and walking is
a challenging task, since our human subjects were allowed to
make small body movements like moving arms and head (as
it is naturally). Based on this result, we conclude that higher
frequency can be beneficial for detecting activities with micro-
movements like respiratory detection [15].
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Fig. 7: Impact of frequency resolution and diversity, with one receiver. E2 is
the target environment.

3) Comparison of CNN vs. ReWiS: Figure 9 compares the
performance of ReWiS learning framework with a baseline
CNN classifier [6]. The classifier utilizes a CNN for feature
extraction with the same structure as the one ReWiS uses
for embedding function training, explained in Section III-C.
Further, a 3-layer fully connected network is used for classifi-
cation. Overall, the total number of parameters of the baseline
classifier is comparable with the ReWiS learning framework.
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empty jumping standing walking mean
area rx. antenna Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

E1

1 1 100 0.9967 85.34 0.9412 82.67 0.8575 79.00 0.8531 87.00 0.9076
1 4 100 0.9852 98.00 0.9484 94.00 0.9292 85.67 0.9212 94.41 0.9460
3 1 100 1.0000 100 0.9891 98.63 0.9905 98.67 0.9928 99.32 0.9931
3 4 100 1.0000 100 1.0000 99.28 0.9960 100 0.9980 99.82 0.9977

E2

1 1 100 0.9804 78.00 0.7091 62.00 0.6392 73.00 0.8022 78.25 0.7827
1 4 100 1.0000 91.00 0.8778 83.33 0.8460 87.33 0.8927 90.42 0.9041
3 1 100 1.0000 98.00 0.9018 80.00 0.8775 93.00 0.9884 92.75 0.9417
3 4 100 1.0000 100 0.9800 95.40 0.9853 100 1.0000 98.85 0.9085

E3

1 1 100 0.9967 74.37 0.7348 87.67 0.7799 59.00 0.6933 80.25 0.8012
1 4 100 0.9852 95.00 0.8810 92.00 0.9049 75.67 0.8599 90.67 0.9078
3 1 100 1.0000 100 0.9747 94.63 0.9649 97.67 0.9827 98.07 0.9806
3 4 100 1.0000 98.67 0.9852 97.00 0.9848 100 1.0000 99.25 0.9925

TABLE I: Impact of macro- and macro- diversity on the accuracy of the predictions. ReWiS is trained in E1 and is tested in E2 and E3.
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Fig. 8: Impact of frequency resolution and diversity, with one receiver. E2 is
the target environment.

We notice that the baseline model is able to learn from the CSI
data collected in the source environment E1, however, is not
able to make accurate predictions in target environments. This
happens since the baseline classifier’s goal is to classify the
CSI measurement. However, the ReWiS learning framework
tends to learn how to learn and achieves 35% better accuracy
on average.
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4) Impact of windowing: Figure 10 compares the perfor-
mance of the algorithm with different window sizes at 80
MHz channel. It can be seen that with a very small window
size i.e., W = 50 the accuracy of the predictions is very
low and it does not improve much by increasing the diversity.
Specifically, Figure 10 shows that (i) by increasing the window
size W , the number of receivers, and the number of antennas
per receiver, the performance improves by up to 35%, 12% and
10%, respectively. However, with a higher number of antennas,
the window size can be decreased and still achieve acceptable
accuracy. It is worth noting that reducing the window size
reduces pre-processing time and complexity.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed ReWiS, a novel frame-
work for robust and environment-independent Wi-Fi sensing.
ReWiS leverages multi-antenna multi-receiver diversity to
improve the overall robustness, and leverages a customized
version of FSL to eliminate the need for application-specific
feature extraction. ReWiS has been prototyped using off-the-
shelf Wi-Fi equipment, and its performance has been show-
cased by considering a human activity recognition. We have
performed an extensive data collection campaign, evaluated the
impact of each diversity component on the performance, and
compared ReWiS with a CNN-based approach. Experimental
results have shown that ReWiS improves the performance
by about 40% with respect to existing single-antenna low-
resolution approaches, and increases accuracy by 35% with
respect to a CNN when tested in different environments.
As part of the novel contributions, we will release our 60
GB dataset and the entire code repository to the community.
We believe that ReWiS improves the state of the art in
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Wi-Fi sensing, by demonstrating superior generalization and
robustness capabilities with respect to existing work. As part of
future work, we are planning to test ReWiS in the presence
of more complex classification tasks, for example, multiple
human subjects or additional activities.
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