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ABSTRACT Exploiting the millimeter wave (mmWave) band is an attractive solution to accommodate
the bandwidth-intensive applications in device-to-device (D2D) communications. The directional nature of
communications at mmWave frequencies and mobility of devices require beam alignment at both transmitter
and receiver ends. The beam alignment signaling overhead leads to a loss in the network’s throughput.
There exists a trade-off between antenna beamwidth and the achievable throughput. Although a narrower
antenna beam increases the directivity gain, it leads to a higher signaling overhead and less stable D2D
links which reduce the network’s throughput. Therefore, optimizing the antenna beamwidth is crucial
to maintain the D2D users’ quality-of-experience (QoE). In this paper, we propose a novel distributed
antenna beamwidth optimization algorithm based on multi-agent deep reinforcement learning. We model
D2D links as agents that interact with the communication environment concurrently and learn to refine
their antenna beamwidth policies. Agents aim to maximize the network sum-throughput and maintain
reliable communication links while taking into account the application-specific quality-of-service (QoS)
requirements and the cost associated with beam alignment. Online deployment of the proposed algorithm is
distributed and does not require any coordination among users. The performance of the proposed antenna
beamwidth optimization algorithm is compared with other widely used baseline algorithms. Numerical
results show that our proposed algorithm improves the network performance significantly and outperforms
existing approaches.

INDEX TERMS Device-to-device, mmWave, antenna beamwidth optimization, multi-agent, deep reinforce-
ment learning.

I. INTRODUCTION
Device-to-device (D2D) communication allows user equip-
ments (UEs) to communicate over direct links rather than
traversing the cellular infrastructure. D2D communication is
envisioned to improve the network’s performance by offload-
ing the cellular network and providing ubiquitous coverage
for commercial, public safety and critical communication
applications [1]. However, implementation of D2D commu-
nication is limited mainly due to spectrum scarcity in the
sub-6 GHz band. Exploiting the abundant unlicensed spec-
trum in the millimeter-wave (mmWave) band for D2D com-
munications is seen as an attractive solution to addressing the
spectrum scarcity bottleneck [2].
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Radio propagation at mmWave band encounters sev-
eral obstacles such as severe path-loss and sensitivity to
blockages [3]. The small wavelength of mmWave signals,
however, facilitates the implementation of large directional
and high-gain antenna arrays on D2D devices, which helps
to compensate for additional path-loss [3]. This, in turn,
introduces a new challenge to D2D communications. Achiev-
ing the maximum directivity gain in a highly directional
mmWave band system requires the transmitters and receivers
to be aligned. Beam alignment incurs significant signal-
ing overhead to the system, which reduces the network’s
throughput significantly. There exists a trade-off between
antenna beamwidth and achievable throughput [4]. Selecting
a narrower antenna beam, although leads to higher antenna
gain, incurs longer beam alignment overhead and reduces
the link stability time. Therefore, one needs to optimize the
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antenna beamwidth prior to data transmission to maximize
the network’s sum-throughput and maintain users’ quality-
of-experience (QoE). Modeling the antenna beamwidth opti-
mization problem and finding a systematic algorithm to reach
the optimal solution is even more challenging in the D2D
environment as the mobility of the devices and the diverse
quality of service (QoS) requirements, make network topol-
ogy highly dynamic. In this paper, we focus on the antenna
beamwidth optimization problem in a mmWave D2D net-
work where D2D UEs optimize their antenna beamwidth
based on their context information to maximize the network
sum-throughput and to maintain reliable D2D links.

Despite the recent advances in antenna beamwidth tun-
ing technologies [5] and the significant impact of antenna
beamwidth optimization on network performance [6], it is a
fairly unexplored research area. There exist few studies in
the literature that discuss antenna beamwidth optimization
[6]–[10]. Nevertheless, most of the existing works suffer from
several limitations that make them inappropriate for D2D
communications. For example, works in [6]–[11] are central-
ized and computationally expensive, [6]–[8], [10] increase
the communication overhead significantly and [9], [10] are
not robust against changes in the network topology, thus,
cannot be applied to the D2D communication framework.

Compared with those methods, deep reinforcement learn-
ing (DRL) based algorithms present the most promising
mechanisms to tackle complex optimization problems in
communication networks. DRL enables an agent to make
complex on-line decisions in dynamic and uncertain envi-
ronments, given only sequences of observations and rewards
without increasing the overall system overhead. However,
existing DRL-based techniques such as [12], [13] imple-
ment an independent Q-learning (IQL) approach [14] through
which each agent learns a policy based on its actions
and observations and treats other agents as a part of the
environment. Nevertheless, multi-agent environments are
non-stationary since agents are learning and updating their
policies concurrently [15]. Therefore, implementing IQL is
not suitable for addressing multi-agent domains as it causes
an agent’s locally optimal action to become a globally
non-optimal joint action [16]. In addition, non-stationarity
introduced by IQL also inhibits exploiting experience replay,
which is crucial in speeding up and stabilizing the DRL train-
ing process. Therefore, addressing the antenna beamwidth
optimization problem using a distributed and low-overhead
DRL-based algorithm while considering the non-stationarity
of the multi-agent environment is a paramount problem that
is lacking in the literature.

In this paper, our goal is to maximize the network
sum-throughput through optimizing D2D UEs’ antenna
beamwidth. The interaction among D2D UEs along with
the mobility of UEs and various D2D applications’ QoS
requirements, make antenna beamwidth optimization a
challenging problem. Since ignoring user interactions and
non-stationarity of the environment leads to non-optimal
solutions, we model the beamwidth optimization problem

as a multi-agent problem and exploit the recent progress
of multi-agent DRL to develop a distributed antenna
beamwidth optimization algorithm. The proposed algorithm
enables D2DUEs tomaximize the network’s sum-throughput
while maintaining reliable communication links to support
various D2D commercial and public safety applications.
The proposed algorithm considers mmWave propagation
characteristics, directional communication, D2D users’
mobility, payload size, QoS requirements, and achievable
throughput versus antenna beamwidth trade-off, simultane-
ously. The main contributions are summarized as follows:
• We proposed a multi-agent DRL-based antenna
beamwidth optimization algorithm to maximize the
network sum-throughput. In addition, the D2D UEs
joint antenna beamwidth policy maintains the reliability
of the D2D links by assuring that D2D links transmit
their payload successfully in the required time budget.
The proposed algorithm has two phases: training and
decentralized deployment. The training phase is per-
formed offline, under different network topologies using
a shared reward function. The training algorithm enables
distributed agents to optimize their antenna beamwidth
during the online implementation without requiring any
inter-agent communications.

• We modeled the antenna beamwidth optimization prob-
lem as a cooperative multi-agent DRL; since implement-
ing IQL does not guarantee convergence to an efficient
joint solution. Fingerprint-based learning [17] is imple-
mented to enable agents to track their fellow agents’
policies and reach the optimal joint action solution.
Using fingerprint learning facilitates experience replay
which expedites and stabilizes the training phase of the
multi-agent DRL-based antenna beamwidth optimiza-
tion algorithm.

• The performance of the proposed algorithm is com-
pared with the existing methods such as IQL [12], [13],
random antenna beamwidth selection [18], and con-
stant antenna beamwidth selection [19]. The simulation
results show that our proposed algorithm outperforms
other existing methods and improves the network
sum-throughput and D2D links’ reliability significantly.

The remainder of this paper is organized as follows.
Section II reviews the relevant related work. The system
model and assumptions along with network sum-throughput
maximization problem formulation are described in
Section III. A novel distributed antenna beamwidth optimiza-
tion algorithm based on multi-agent DRL for solving the
network sum-throughput maximization problem is proposed
in Section IV. Simulation results are presented in Section V
and finally, conclusions and the future work directions are
discussed in Section VI.

II. RELATED WORK
Directional transmissions are used in the mmWave band to
compensate for the high path-loss [3]. Therefore, beam align-
ment must be implemented at the transmitter and receiver
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TABLE 1. Comparison with relevant schemes.

ends in order to establish high-throughput physical links.
Beam alignment between transceivers requires sending and
receiving multiple pilot signals [4], which reduces the D2D
links’ throughput as D2D transceivers cannot transmit data
during the beam alignment phase. Although reducing antenna
beamwidth increases the directivity gain, it requires longer
beam alignment overhead and is more prone to misalignment.
Therefore, it is necessary to optimize antenna beamwidth
according to D2D UEs context information. Despite its
importance, antenna beamwidth optimization has yet to be
explored properly. Existing antenna beamwidth optimization
techniques can be categorized into the following groups:
particle swarm optimization [6]–[8], dynamic program-
ming [9], non-linear programming [10], deep learning [11],
and DRL-based methods [12], [13].

The particle swarm optimization (PSO) algorithm is used
in [6], [7] for improving system throughput of a vehicular
communication network and a relaying small-cell network.
In addition, the PSO algorithm is used in [8] for interference
management in the D2D network by proposing a device
association and beamwidth selection. Beam management
is performed in [9] with the goal of maximizing network
throughput using backward dynamic programming. A frame-
work is proposed in [10] to simultaneously control the trans-
mission power and the beam-level beamwidths of indoor
mmWave transceivers to maximize the energy efficiency of
the network using non-linear programming. In [11], a deep
learning-based beammanagement and interference coordina-
tion (BM-IC) is proposed tomaximize the sum-rate of a dense
mmWave network. These techniques cannot be applied to
mmWave band D2D networks since they suffer from several
limitations. First, existing techniques such as [6]–[11] are
centralized and computationally expensive as they require an
online central controller to optimize the antenna beamwidth,
thus, cannot be applied to the D2D communication frame-
work. Moreover, most of the existing techniques such as
[6]–[8], [10] require coordination and information exchange
among network entities, which increases the communication
overhead significantly and makes these approaches not scal-
able. Furthermore, existing techniques such as [9], [10] are
not robust against changes in the network topology, where
the dynamicity of the network entities can negatively impact
the system performance.

Recently, reinforcement learning (RL) is shown to be a
useful tool to tackle several complex optimization problems
in communication networks [20] such as dynamic spectrum

access [21] and resource allocation [22]. However, the learn-
ing process in RL is time-consuming. DRL takes advantage of
multi-layer neural networks to expedite the learning process,
thereby improving the learning speed and the performance of
RL algorithms. A DRL-based approach is proposed in [12]
that simultaneously optimizes beamwidth and transmit power
of transceivers in the network. A self-tuning sectorization
algorithm is proposed in [13] that optimizes base station
MIMO broadcast beams for each cell. The authors in [23]
addressed the problem of optimizing relay selection and
antenna power allocation using a centralized hierarchical
DRL algorithm. However, these works implement an IQL
approach through which each agent learns a policy based on
its actions and observations and treats other agents as a part of
the environment. Using IQL causes an agent’s locally optimal
actions to become a globally non-optimal joint action [16].
Non-stationarity introduce by IQL also inhibit exploiting
experience replay, which is crucial in speeding up the DRL
training process.

Therefore, addressing the antenna beamwidth optimiza-
tion problem using a decentralized and low-overhead DRL
algorithm that considers user interactions and environment
non-stationarity is lacking in the literature. To address these
gaps, we propose a novel distributed antenna beamwidth
optimization algorithm based on multi-agent DRL. Unlike
[6]–[11], the proposed algorithm is decentralized, low-
overhead, and robust to changes in the network topology.
In addition, our proposed algorithm implements fingerprint
learning to consider the interaction among users and the
non-stationarity of the environment. Therefore, the proposed
algorithm reaches an efficient joint solution unlike [12], [13].
Moreover, experience replay is facilitated through finger-
print learning to expedite the learning process significantly.
Our goal is to maximize the D2D network’s sum-throughput
and maintain reliable communication links while taking into
account the application-specific QoS and the cost associ-
ated with beam alignment. Table 1 compares the proposed
antenna beamwidth optimization algorithm with other rele-
vant schemes.

III. SYSTEM MODEL AND PROBLEM FORMULATION
This section describes the system model for mmWave D2D
network and introduces the main elements that impact the
antenna beamwidth policies. In addition, we formulate the
network sum-throughput optimization and the D2D link reli-
ability problem.
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TABLE 2. Summary of notations.

A. NETWORK TOPOLOGY
We consider a network of mobile UEs that communi-
cate through D2D links established at the mmWave fre-
quency band operating under time division duplexing (TDD).
A co-channel deployment with bandwidthW , uniform trans-
mit power, and half-duplex mode are assumed. Let L =
{1, . . . ,L} denotes the set of D2D links in the network where
each D2D link comprises a D2D transmitter and a D2D
receiver. In this scenario, D2D links are already established
using peer association mechanisms such as [24], [25]. Also,
all D2D transmitters have a payload in their buffer Bl that
must be transmitted in a limited time budget Tl according
to their application’s QoS requirement. D2D users move at
variable speeds and directions.

B. D2D CHANNEL MODELING
To model the mmWave channel, the distance-dependent
path-loss model for peer-to-peer communication proposed
in [26] is adopted. Under this model the path-loss is defined as
PL(dl) = Cd−αl , whereC denotes the path-loss intercept, α is
the path-loss exponent, and dl represents D2D link length of a
given D2D link l ∈ L. Each communication link experiences
i.i.d small-scale Nakagami fading with parameter Nh. Hence,
the received signal power can be modeled as gamma random
variable with parameter, hl ∼ 0(Nh, 1/Nh).

C. ANTENNA PATTERN
We assume that each D2D UE is equipped with a directional
antenna and is enabled to rotate its antenna bore-sight toward
the desired direction with a simple rotation around its loca-
tion. Each D2D transceiver can pick a beamwidth from the set
of its available beamwidths, 8l . Without loss of generality,
we assume that D2D transceivers on a given link l adopt the
same antenna beamwidth. This case can be extended to the
case that D2D users implement different strategies.

The directional antenna pattern is modeled using the Gaus-
sian antenna model as

G(θ ) =

{
Gme−ρθ

2
, |θ | ≤ ϕ,

Gs, otherwise,
(1)

where ρ = 2.028 ln(10)
ϕ2

and 2ϕ is the antenna half-power
beamwidth. θ denotes the antenna angle relative to the
antenna’s bore-sight direction. Gm = π102.028

42.64ϕ+π and Gs =
10−2.028Gm are the maximum main-lobe gain and the
side-lobe gain, respectively [27].

D. BEAM ALIGNMENT OVERHEAD
Achieving the maximum antenna gain in a highly directional
mmWave band system requires the transceivers to be pre-
cisely aligned by finding the best transmit and receive antenna
directions. Beam alignment between transceivers requires
sending and receiving multiple pilot signals. In this work,
the hierarchical beam alignment method is considered, where
first the best wide-beam pair is found through an exhaustive
search, and then the search is refined using a narrower beam
level within the subspace of the best wide-beam pair [28].
Assuming the antenna wide-beam pairs are already aligned,
the narrow-beam alignment time [4] can be written as

T Al =
⌈
ψl

ϕl

⌉2
TP, (2)

in which ψl and ϕl denote the wide- and narrow- level
beamwidth of D2D transceivers on link l. TP represents the
pilot signal transmission time.

E. LINK STABILITY TIME
A D2D link is stable and appropriate for data transmission
as long as its D2D transmitter and receiver antennas stay
aligned. Misalignment in directional communication, due to
the users’ mobility, occurs when the received power cause
drops less than a certain ratio, denoted by α ∈ [0, 1].
Consider D2D link l that its receiver and transmitter are

located at point A and B, respectively, as shown in Figure 1.
Assume that the transceivers antenna beams are aligned and
the antenna main-lobe direction is fixed. Also, the receiver
is moving with relative velocity Vl in the direction of the
relative angle of µl (with respect to its antenna bore-sight
direction). Since the bore-sight angle of D2D transceivers
is fixed, the movement will cause beam misalignment. The
pointing error of the D2D receiver toward its transmitter,
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FIGURE 1. The blue triangle represents D2D receiver located at point A
and red circle represents D2D transmitter located at point B. The green
arrow shows the relative trajectory of D2D receiver.

1t seconds later, denoted by 1µl , can be obtained using the
law of sines in triangle ABA′ as

sin(1µl)
Vl1t

=
sin(µl)
dl

.

where dl denotes the D2D links distance. Note that although
receiver movement changes the distance dl , the impact of
distance difference is neglected and only the impact of
movement on the angular difference is considered. Also,
we assume that Vl1t � dl . For small 1µl , we estimate
sin(1µl) ' 1µl , therefore,

1µl '
Vl1t sin(µl)

dl
. (3)

Based on the definition, the link is stable if the relative
antenna gain at the receiver is above a certain ratio, α ∈ [0, 1].

α =
G(θ = 1µl)
G(θ = 0)

= e−ρ1µ
2
l . (4)

Using (3) and (4) the link stability time, denoted by T Sm,n,
can be written as

T Sl =
dlϕl

Vl sin(µl)

√
ln( 1

α
)

2.028 ln(10)
. (5)

It can be seen that higher antenna beamwidth and lower
gain threshold increase the link stability time. Moreover,
lower relative speed guarantees D2D links to be stable for
longer.

F. PROBLEM FORMULATION
The beam misalignment of D2D transceivers caused by
the relative movements of UEs, or availability of payload
with different QoS requirements entail D2D UEs to perform
beam management including beam alignment and antenna
beamwidth optimization to maintain or improve their QoE.
We consider the time-slotted communication framework with
a slot duration of 1τ , as shown in Figure 2. D2D UEs are
allowed to perform beam management at the beginning of
each time slot. Beam management is triggered upon antenna
misalignment, availability of new payload in the D2D trans-
mitter’s queue, or change in the QoS requirements. Beam
alignment leads to a loss in D2D links’ throughput due
to the time consumed to align transceivers’ antenna beam,
as explained in Section III-D. In other words, there exists

a trade-off between antenna beamwidth and the D2D links’
throughput. Selecting a narrower antenna beam leads to
higher antenna gain based on (1), but it incurs higher beam
alignment overhead as per (2). Consequently, the narrower
antenna beam reduces the data transmission time and D2D
links’ throughput. Also, narrow antenna beams are less stable
and more prone to misalignment according to (5). Therefore,
to maintain the QoE (D2D link reliability) and increase the
network’s sum-throughput, D2D transceivers are required to
optimize their antenna beamwidth according to the network
conditions and context information.

The throughput on a given D2D link l with bandwidth W
during time slot k can be defined as

tl(k) = (1− λl(k)η)W log2 (1+ SINRl) , (6)

where λl(k) is the beam alignment parameter, λl(k) = 1
indicates that beam alignment is performed at time slot k and

λl(k) = 0, otherwise.1 η =
TAl
1τ ′

captures the impact of beam
alignment overhead, where 1τ ′ represent the effective time
slot duration for payload transmission (Figure 2). Since D2D
transceivers are not allowed to transmit data on unstable D2D
links, the effective time slot duration for payload transmission
is defined as theminimumof link stability time andmaximum
allowed time slot duration, i.e., 1τ ′ = min(T Sl ,1τ ).
The achieved signal-to-noise-plus-interference-ratio

(SINR) on D2D link l can be written as

SINRl =
PGtl (θl)hlG

r
l (θl)PL(dl)∑

j∈L
j6=l

PGtj (θj)hjG
r
l (θl)PL(dj)+ σ

2 ,

where P represents the transmit power, Grl (θ
r
l ), G

t
l (θl) and

are the D2D receiver and transmitter antenna gain on link l,
respectively. The leftmost term in the denominator represents
the aggregated received interference at the receiver of link l
from all other D2D transmitters, and σ 2 denotes the noise
power. We assumed that duration of a time slot is shorter than
channel coherence time. Therefore, the channel is considered
non-varying during a time slot.

Let ql(k+ 1) be the remaining payload of D2D transmitter
on link l at the beginning of time slot k + 1 and is defined as

ql(k + 1) = ql(k)− δl(k), (7)

where δl(k) = tl(k)∗1τ ′ denotes the amount of payload that
is transmitted during time slot k . QoS constraint of the D2D
link l is modeled as a limited time budget Tl through which
the D2D payload Bl must be transmitted. The reliability of
the D2D link l, as the measure of QoE of users, is defined
as the ratio of the transmitted payload during time budget
Tl = Nl1τ with Nl time slots and can be written as

0l =
1
Bl

Nl∑
k=0

δl(k) (8)

1Antenna beam alignment optimization is not the focus of this work.
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FIGURE 2. Time-slotted communication. Beam alignment can be performed in the
beginning of each time-slot if necessary. T S

l , T A
l , 1τ ′ represent link stability time, beam

alignment time, and effective time-slot duration, respectively.

The problem we are addressing in this work can be for-
mulated as designing an antenna beamwidth selection policy
such that it maximizes the network sum-throughput as

Maximize
8

1
1τ

∑
l∈L

Nl∑
k=0

δl(k) (9a)

subject to: ϕ2l ≥ ψ
2
l
TP
1τ ′

, ∀l ∈ L, (9b)

ϕl ≤ ψl, ∀l ∈ L, (9c)

where 8 = {ϕ1, . . . , ϕl} is the joint antenna beamwidth
selection policy of D2D links. Constraint (9b) represents the
lower band of feasible antenna beamwidth, and it holds since
beam alignment time must be less than the effective time slot
duration, i.e., T Al ≤ 1τ

′. Constraint (9c) shows the antenna
beamwidth upper bound.

The optimization problem (9) is difficult to solve ana-
lytically and is computationally hard due to the interac-
tion among D2D links, especially in the D2D environment,
which requires low-overhead distributed solutions. In this
paper, we propose a solution based on multi-agent deep
reinforcement learning to tackle this problem. The proposed
framework considers the non-stationarity of the multi-agent
environment and the interaction among users. Our goal is to
enable D2D UEs to learn a joint antenna beamwidth opti-
mization policy that maximizes the network sum-throughput
in various network dynamics, only based on its local obser-
vation without online coordination or exchanging messages.
Moreover, the reliability of the antenna beamwidth optimiza-
tion policy is required to be assessed to assure that under such
policy all D2D links’ payloads are successfully transmitted,
0l ≥ 1,∀l ∈ L.

IV. PROPOSED SOLUTION USING MULTI-AGENT DEEP
REINFORCEMENT LEARNING
In this section, we describe the proposed solution to solve
the network sum-throughput maximization problem through
optimizing D2D UEs’ antenna beamwidth in a mmWave
D2D dynamic environment using cooperative multi-agent
DRL. First, we explain the multi-agent DRL framework,
where multiple agents interact in a common environment,
take an action and try to learn a policy to maximize their
shared reward. Then, we explain the details of the proposed
antenna beamwidth optimization algorithm. The proposed
algorithm is based on the multi-agent DRL framework and
is used to solve the optimization problem (9). We define the

states, actions, and rewards in the mmWave D2D multi-agent
environment.

A. BACKGROUND ON MULTI-AGENT DEEP
REINFORCEMENT LEARNING AND Q-LEARNING
A cooperative multi-agent DRL framework is a setting
where agents concurrently interact with a shared environ-
ment and learn to coordinate together to achieve a com-
mon objective [29]. Agents interact with the environment
according to partially observable (PO) Markov decision pro-
cesses (MDP) (POMDP). In POMDP the system dynamics
are determined by an MDP, but the agent cannot directly
observe the underlying state. An POMDP is defined as tuple
(L,S,U, T ,R,Z,O), in which L is the set of agents, S
denotes the state space, U = ×lUl is the joint action
space, Z = ×lZl is joint observation space. Each agent
executes an action ul ∈ Ul based on its policy πl , form-
ing a joint action u that make the current state s ∈ S
transit to ŝ with the probability of T (s,u, ŝ). Agents in
partially-observable environment receive observations of the
latent state, denoted as zl with the joint observation proba-
bility of O(z, ŝ,u), where z = (z1, . . . , zL). Consequently,
at each time-step k , agents receive a shared reward r(k) =
R(s(k),u(k)). Agents aim to maximize the expected dis-
counted return R(k) =

∑H
t=0 γ

tr(t + k + 1) with horizon
H , where γ ∈ [0, 1) is the discount factor, by finding the
optimal policy π∗l . Q-Learning [30] is used to find the best
policy by estimating the Q-values of policies Qπl (zl, ul) =
Eπ [R(k)|z(k) = zl, u(k) = ul]. In multi-agent DRL, agents
interact with the environment without explicit knowledge
of POMDP model. Due to partial observability and local
non-stationarity of POMDP, learning the underlying POMDP
model is complicated. Therefore, agents instead of learning
functions T ,R and O, directly learn Q-values or policies.

Q-learning iteratively estimates the optimal Q-value func-
tion using backups. The optimal policy π∗ maximizes the
Q-value function, Qπ

∗

l (zl, ul) = maxπ Ql(zl, ul). Deep
Q-learning uses a deep neural network, known as deep Q
network (DQN) parameterized by θl ,Q(zl, ul; θl), to estimate
Q-values. DQN relies on experience replay to accelerate and
stabilize the training process. During training, actions are
chosen according to ε-greedy policy that selects the currently
estimated best action with probability 1 − ε, and takes a
random exploratory action with probability ε. Each agents’
experience including current observation, action, reward and
next observation as tuple 〈zl(k), ul(k), rl(k), zl(k + 1)〉 is
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stored in its replay memory. Replay memory is a first-in-
first-out queue containing the set of latest experience tuples.
The parameters θl are iteratively updated using stochastic
gradient descent (SGD) by sampling batches of b expe-
riences from the replay memory to minimize the squared
temporal-difference (TD) error:

Ll(θl) =
b∑
i=1

[
yDQNi − Qπl (z

b
l (k), u

b
l ; θl)

]2
,

with a target yDQNi = r il (k) + γ maxu′ Qπl (z
b
l (k + 1), u′; θ−l )

where θ−l are the parameters of a target network periodically
copied from θl and kept constant for a number of iterations.
The replay memory stabilizes learning, prevents the network
from overfitting to recent experiences, and improves sample
efficiency.

The widely used approach to solve multi-agent DRL is
Independent Q-learning (IQL) [14], where each agent learns
its DQN parameters only based on its observations and
actions while treating other agents as a part of the environ-
ment. However, since all agents are learning and affecting the
environment simultaneously, using IQL makes the environ-
ment non-stationary from the perspective of any individual
agent. Non-stationarity and local observability of multi-agent
environments cause locally optimal action to become globally
non-optimal joint action [16]. In addition, the non-stationary
nature of the environment makes the experience replay mem-
ory samples obsolete and negatively impacts the training
performance [17].

The non-stationarity can be resolved if agents’ observa-
tion state is augmented with an estimate of other agents’
policies. One possible solution is augmenting each agent’s
observation space with its fellow agents’ DQN parameters.
However, this method is intractable in practice since a large
number of DQN parameters complicates the learning process.
Also, sharing and updating DQN parameters among agents
increases the signaling overhead significantly that conse-
quently reduces the D2D links’ throughput. To overcome
this problem, low-dimensional estimates (i.e., fingerprints) of
other agents’ policies can be added to agents’ experience [17].
It is shown that augmenting the agents’ experience tuple with
fingerprints, including the training iteration number e and
exploration rate ε disambiguates the age of training samples
and stabilizes the replay memory significantly. Recently, this
method has been used to address the non-stationarity of
the environment in multi-agent wireless networks, such as
spectrum sharing [31] and dynamic power allocation [32].
In this work, we use fingerprint-based learning to address the
non-stationarity of the mmWave D2D environment.

B. PROPOSED FRAMEWORK
We model the D2D framework in Section III as POMDP
and propose an beamwidth optimization algorithm based
on the multi-agent DRL framework to enable D2D UEs to
solve the optimization problem in (9a)-(9c). In this frame-
work, the set of D2D links L are modeled as agents that

are assigned with a common objective of maximizing the
network sum-throughput. D2D links interact with the com-
munication environment to gain experience which enables
them to learn the optimal joint antenna beamwidth policy.
The proposed framework has two phases, centralized training
and distributed deployment. Each D2D link has a DQN that
must be trained. During the training phase, each D2D link
takes an action (selecting an antenna beamwidth) based on
its observation and receives a shared reward from the envi-
ronment which directs it toward learning the optimal policy
through training its DQN.During the deployment phase, D2D
links select an antenna beamwidth based on their observation
using their trained DQN, without online coordination or mes-
sage exchange. The schematic of the proposed framework is
shown in Figure 3.

1) TRAINING PHASE
Since the optimal antenna beamwidth selection policy is
unknown to the D2D links at the beginning of the training
process, we consider the training process to be an episodic
DRL where learning is a continuing task over a time horizon
of T = Nmax1τ . D2D links’ DQN are trained through
running multiple episodes. At the beginning of each training
episode, the environment parameters are randomly initial-
ized including D2D UEs velocity, the direction of movement
and antenna main lobe direction and beamwidth. Also, D2D
transmitters are loaded with a payload that lasts until the end
of the episode. Algorithm 1 presents the proposed offline
antenna beamwidth selection training algorithm.

At the beginning of each time slot, if payload exists for
transmission, q(k) > 0, D2D transmitter and receiver on
each established D2D link examines the antenna alignment.
If beam alignment is required (i.e., the transceivers’ anten-
nas are misaligned), D2D UEs on each link must select an
antenna beamwidth and perform beam alignment, λ(k) = 1.
Otherwise, D2D UEs stick to their previous policy λ(k) = 0,
and the D2D transmitter continues to transmit its payload
(lines 5-13).

a: ACTIONS AND oBSERVATIONS
D2D transmitter and receiver on each established D2D link
select an action, i.e., antenna beamwidth ul ∈ 8l based
on their local observations and context information using
an ε-greedy policy (lines 6 -13). The action space of each
user is the set of the antenna beamwidths that can be gen-
erated by the user’s antenna array, however, to satisfy (9c)
antenna beamwidth must be less than the wide-level antenna
beamwidth, i.e., ul < ψl . We define the observation state of
a D2D link l as

zl(k) =
{
Il, ql(k),Tl(k),T Sl (k), λl(k), e, ε

}
, (10)

where Il denotes the measured interference power at the
D2D receiver on link l. The interference can be accurately
estimated by the receiver of each D2D link at the beginning
of each time slot. We assume it is also available instan-
taneously at the transmitter through a delay-free feedback
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Algorithm 1: Training Phase of the D2D Antenna
Beamwidth Optimization Algorithm Using
Multi-Agent DRL

1 Initialization: k = 0, set the D2D UEs’ antenna
beamwidth randomly,
8(0) = {u1(0), u2(0), . . . , uL(0)}.

2 repeat
3 foreach D2D links l ∈ L do
4 Receive observation zl(k).
5 if T Sl (k) = 0 and ql(k) > 0 then
6 p = random().
7 if p < ε then
8 Pick a random action ul(k) ∈ 8l ,
9 else
10 ul(k) = argmaxu′ Ql(zl(k), u′; θl)
11 end
12 else
13 ul(k) = ul(k − 1).
14 end
15 Packet δl(k) and ql(k) and forward it to the

central node.
16 end
17 The central node computes the shared reward rs(k)

based on (11).
18 if ql(k) 6= 0 then
19 rl(k) = rs(k),
20 else
21 rl(k) = C .
22 end
23 Receive observation zl(k + 1).
24 foreach D2D link l ∈ L do
25 Store tuple 〈zl(k), ul(k), rl(k), zl(k + 1)〉 in the

replay memory.
26 Sample a batch of b samples from replay

memory.
27 Calculate yDQNi .
28 Perform SGD to minimize Ll(θl).
29 if (k mod Nu) = 0 then
30 Copy θl into θ

−

l .
31 end
32 end
33 k = k + 1
34 until
35 k < Nmax

channel. ql(k), T Sl (k) and Tl(k) are the remaining D2D pay-
load, the remaining link stability time and the remaining time
budget to transfer the payload, respectively. Values of training
episode e, and exploration rate ε are added to the observation
tuple to address the non-stationarity of the environment and
facilitate experience replay.

b: REWARD FUNCTION
Since a selfish action selection that solely maximizes each
D2D link’s throughput cannot guarantee to obtain global

optimization. D2D links are trained by a shared reward to
turn the environment into a fully cooperative2 one. At the
end of each time slot, the D2D transmitters evaluate the
amount of the transmitted payload δl(k) and forward it to
a central node (line 15). Then, the central node calculates
the network average data throughput and broadcasts it to
all agents (line 17-21). The shared reward function can be
written as

rs(k) =
1
|L|1τ

∑
l∈L

δl(k), (11)

where |.| denotes the set cardinality. The central node can be
the base station or a UE that is picked by D2D UEs. Note
that, as soon as the agent delivered all of its payload, its
reward becomes constant, C . The constant value should be
big enough to ensure that the algorithm encourages reliable
D2D links, i.e., 0l > 1. The observation tuple and the
reward function parameters are selected to ensure that the
optimization problem in (9) is satisfied. First, reward func-
tion (11) is in line with objective function (9) to maximize
the network sum throughput. Parameters Tl(k) and T Sl (k) in
the observation tuple (10) ensure that the selected beamwidth
provides sufficient time for successful data transfer in the
required time budget as (9b). Also, monitoring ql(k) in the
observation tuple and the constant reward C are designed to
encourage the D2D link reliability such that 0l ≥ 1,∀l ∈ L.

At the end of each time slot, experiences are stored in
replay memory and the D2D links’ DQN are trained using
samples from their experience replay memory. In order to
stabilize the learning, the parameter set of the target DQN,
θ− are duplicated from the training DQN parameter set
θ every Nu episodes and is kept fixed in between [17]
(lines 25-31).

2) DEPLOYMENT PHASE
During the deployment phase, at each time step, each D2D
link assesses its context information including payload avail-
ability, beam alignment and received interference. Using the
acquired information, the observation tuple in (10) is formed.
Note that in the deployment phase values of e and ε are set to
the values of the last training episode. The observation tuple is
fed into the trainedDQN. The outputs of the trainedDQNnet-
work areQ-value of all possible actions (antenna beamwidth),
as shown in Figure 3. Then, D2D UEs on each link select an
antenna beamwidth with the maximum Q-value. Finally, all
D2D links transmit their payload using their selected antenna
beamwidth.

The centralized training procedure, which requires high
computational capacity is performed offline under various
network topologies and different initial conditions, which
allows the D2D links to performwell during the decentralized
execution time even with strong non-stationary conditions.

2By cooperative we mean that agents are aimed at maximizing a shared
objective

110608 VOLUME 9, 2021



N. Bahadori et al.: Antenna Beamwidth Optimization in Directional D2D Communication

FIGURE 3. Illustration of the proposed beam management algorithm. Training is performed offline and
requires a central node to compute the reward. The online implementation is distributed and dos not
require any coordination.

V. NUMERICAL RESULTS
To demonstrate the effectiveness of the proposed algorithm,
we compare its performance with two baseline models,
i.e., random antenna beamwidth selection [18] and constant
antenna beamwidth [19]. Also, to demonstrate the impact
of non-stationarity of the multi-agent environment, the per-
formance of the proposed antenna beamwidth optimization
algorithm is compared with the classical IQL [12], [13],
in which D2D links do not learn to cooperate and treat their
fellow agents as a part of the environment.

We custom built our simulator consisting of the D2D inter-
action environment and the D2D links’ DQN that is used to
learn the antenna beamwidth selection policy. The D2D inter-
action environment is an area of the size 1 km × 1 km, which
is —given the transmit power of D2D users— large enough
to avoid the boundary effect. In the simulation environment,
D2D UEs are located uniformly in the simulation area. For
each D2D transmitter, we assumed there exists a correspond-
ingD2D receiver at distance dl . Also, D2DUEsmove accord-
ing to the randomwalk model. D2D users’ trajectories (speed
and direction of movement) are drawn based on i.i.d. uni-
form random variables. D2D transceivers are equipped with
a directional antenna for data transmission in the mmWave
band. Also, we assume that all the D2D transmitters transmit
at the same power. Simulation parameters shown in Table 3
are used, unless otherwise specified.

The DQN of each D2D link comprises three fully con-
nected hidden layers, of 500, 250, and 120 neurons, respec-
tively. The rectified linear unit (ReLU), f (x) = max(0, x), is
used as the activation function and Adam optimizer is used
to update network parameters with a learning rate of 0.001.
The agents’ DQN is trained offline using ε-greedy policy for
a total of 3000 episodes. We want the D2D transceivers on

TABLE 3. Simulation parameters:D2D environment.

each link to find the best policy fast, however, committing
to a policy without sufficient exploration could also trap the
D2D links in a locally optimal policy. To address the trade-off
between exploration and exploitation, the exploration rate ε is
linearly annealed from 1 to 0.02 over the first 2400 episodes
and remains constant afterward. The hyper-parameters values
of DQN in Table 4 are tuned through informal search. It is
worth noting that in the training phase, the payload size of
all D2D links is considered the same. However, the payload
size and QoS requirements of D2D links vary during the
deployment phase. Each episode of the training contains
Nmax time-slots with a duration of 1τ . D2D transmitters
are loaded with a payload with size B at the beginning of
each episode which must be transmitted by the end of the
episode.
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TABLE 4. Simulation parameters:DQN.

At the beginning of each training episode e, D2D UEs’
velocity, the direction of movement and channel condition
are set randomly. L D2D links are established between D2D
transceivers in the network environment, and D2D UEs align
their antenna towards their corresponding peer. At the begin-
ning of each time slot k , D2D links’ channel conditions
are updated according to a Gamma random variable. Also,
the location of D2D UEs is updated according to the random
walk model. Based on the new location of users, beam align-
ment is performed if antennas are misaligned. At the begin-
ning of each time slot, D2D UEs on each D2D link gathers
their context information, including the remaining payload
in the D2D transmitter’s queue, the amount of interference,
remaining link stability time and time budget to transmit
the payload. Using the gathered information and fingerprints
including current training episode number and exploration
rate ε, D2D UEs form the observation tuple in (10). D2D
UEs take an action according to the ε-greedy policy and
receive a reward and a new observation. This information is
stored in the replay memory which is used for training the
DQN network. The size of the experience memory is limited.
During the training, older samples will be replaced by new
samples gradually.

To verify that the D2D UEs’ joint policy maximizes the
network sum-throughput while maintaining reliable D2D
links, we evaluate the performance of the proposed antenna
beamwidth optimization algorithm and the related baseline
models in terms of D2D link reliability and throughput.
Using (8), the network’s link reliability, denoted by 0l ,
is defined as the ratio of D2D links that transmit their payload
successfully in the limited time-budget (specified by the QoS
requirement). The network’s link reliability can be written as

0 =
|L′|
|L|

,

where L′ = {l ∈ L
∣∣0l ≥ 1}.

Figure 4 compares the performance of the proposed algo-
rithm in terms of network link reliability with the exist-
ing approaches. The results are averaged over 200 runs of
Monte-Carlo simulations to thwart the effect of noisy results.
It can be seen that increasing the payload size decreases
the D2D links’ reliability as fewer D2D links can success-
fully transmit their payload. However, our proposed antenna
beamwidth optimization algorithm maintains the D2D link

FIGURE 4. Performance comparison in terms of the D2D network link
reliability vs. D2D payload size.

reliability at an acceptable level, i.e., more than 90% of D2D
links transmit their payload successfully when the payload
size is less than 35 MB. Also, the performance of random
beamwidth selection and constant beamwidth selection dete-
riorates significantly as the payload size increases, since these
approaches do not optimize antenna beamwidth according to
the context information. It should also be noted that the IQL
fails to guarantee D2D links reliability, which justifies the
importance of considering the non-stationary of a multi-agent
environment and enabling D2D links to track their fellow
agents’ policies to reach the best joint beam management
policy.

Figure 5 compares the performance of the proposed
antenna optimization training algorithm with the IQL algo-
rithm in terms of D2D link throughput and reliability. The
results are shown for four D2D links during an episode
of the distributed deployment. Figures 5a and 5b compares
the D2D transmitters’ queue status during 100 time slots
of a deployment scenario. It can be seen that the proposed
algorithm enables all D2D UEs to maintain reliable links by
transmitting their whole payload in the required time budget
successfully. While using the IQL does not guarantee D2D
links’ reliability, since none of the D2D UEs could transmit
their payload in the required time budget.

Figures 5c and 5d show the changes in the D2D links’
throughput while transmitting their payload during the same
deployment scenario. These figures illustrate that by imple-
menting the proposed algorithm, D2D links learned to coop-
erate rather than acting selfishly as in IQL. It can be seen
in Figure 5c that D2D links take turns to send their pay-
loads according to their observation tuple. In this example,
using the proposed algorithm, D2D link 2, at the beginning
achieves a high throughput to transmit its payload while
other D2D links keep their transmissions low to avoid caus-
ing interference and deteriorating D2D link 2’s through-
put. It can be seen that throughput of D2D link 2 goes to
zero upon finishing transmitting its payload at time slot 45
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FIGURE 5. Reliability of the D2D links using the proposed multi-agent DRL-based algorithm is compared with the single-agent algorithm, where the
non-stationarity of the environment is neglected. Four D2D links status are shown during 100 time slots within an implementation episode:
(a) remaining D2D links’ payload using the proposed algorithm, (b) remaining D2D links’ payload using IQL, c) D2D links’ throughput using the
proposed algorithm, and (d) D2D links’ throughput using the single-agent algorithm.

(also shown in Figure 5a). Afterward, in the same manner,
D2D links 1, 4 and 3 take turns to transmit their payload,
while others keep their activities at a minimum. Meanwhile,
Figure 5d shows that using the IQL algorithm and ignoring
the non-stationarity of the environment results in competition
among the D2D links to increase their individual throughput
during each time slot. The interference among D2D links
leads to throughput reduction and failure in payload trans-
mission. Compared to IQL, our proposed algorithm man-
ages to keep the network sum-throughput very high. Also,
the proposed algorithm provides very high throughput (about
10 Mbps) to each D2D link. In contrast, the throughput
of D2D links using IQL is relatively low (about 3 Mbps).
These results confirm that IQL is not a suitable approach for
non-stationary multi-agent environments. Since using IQL

D2D UEs merely take actions based on their own observa-
tionswhile other users are treated as a part of the environment.

Figure 6 compares the normalized reward received by D2D
links using the proposed algorithm and IQL. The graph shows
the reward of a given D2D link. The results are shown for
3000 training episodes. Note that, in IQL agents are not
trained using a shared reward function. The growing trend
of reward function using our proposed algorithm indicates its
efficiency in enabling agents to cooperate and increase the
reward function.While using IQL, the D2D link fails to refine
its policy to improve its reward function. Also, the relatively
stable and tight convergence of the proposed algorithm’s
reward function highlights its ability to find an effective joint
policy. At the same time, IQL’smassive fluctuation shows that
the D2D link cannot converge to a good policy.Moreover, this
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FIGURE 6. Normalized reward of D2D links during 3000 training episodes.

graph is a reliable measure to verify the sufficiency of the
number of training episodes. The fast and tight convergence
of the proposed algorithm indicates that 3000 episodes are
sufficient to train the D2D links.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a novel multi-agent DRL-based
algorithm to optimize D2D UEs’ antenna beamwidth in a
directional D2D network in the mmWave band. The proposed
algorithm considers D2D UEs’ mobility, payload size, QoS
requirements, beam alignment cost and non-stationarity of
themulti-agent environment. The proposed algorithm enables
D2D links to learn an optimized antenna beamwidth selec-
tion policy to increase the network sum-throughput while
maintaining the D2D link reliability. D2D links are trained
offline using a shared reward function while the deployment
of the proposed algorithm is distributed and does not require
any online coordination. The training algorithm is based on
the multi-agent DRL, and the non-stationarity of the envi-
ronment is addressed by augmenting users’ observation with
a low dimensional fingerprint. Finally, the performance of
the proposed antenna beamwidth optimization algorithm is
evaluated through extensive simulations. Also, a performance
comparison is performed with existing approaches, such as
IQL and random beamwidth selection. Results show that our
proposed algorithm improves network performance signifi-
cantly and outperforms other approaches.

In the future, we plan to investigate adapting the proposed
algorithm in indoor applications. In such environments, D2D
users are more prone to perform beam alignment due to
shorter beam stability time. The proposed beamwidth selec-
tion algorithm in this work will manage to compensate for the
stability time by selecting the proper antenna beamwidth and
render higher performance gains.

ACKNOWLEDGMENT
The authors would like to acknowledge the support from
Air Force Research Laboratory (AFRL) and the Office of

the Secretary of Defense (OSD) for sponsoring this research
under agreement number FA8750-15-2-0116. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of AFRL, OSD, or the U.S.
Government.

REFERENCES
[1] A. Asadi, Q. Wang, and V. Mancuso, ‘‘A survey on device-to-device com-

munication in cellular networks,’’ IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1801–1819, Nov. 2014.

[2] J. Qiao, X. Shen, J. Mark, Q. Shen, Y. He, and L. Lei, ‘‘Enabling device-to-
device communications in millimeter-wave 5G cellular networks,’’ IEEE
Commun. Mag., vol. 53, no. 1, pp. 209–215, Jan. 2015.

[3] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, ‘‘Millimeter wave
mobile communications for 5G cellular: It will work!’’ IEEEAccess, vol. 1,
pp. 335–349, May 2013.

[4] H. Shokri-Ghadikolaei, L. Gkatzikis, and C. Fischione, ‘‘Beam-searching
and transmission scheduling in millimeter wave communications,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 1292–1297.

[5] Z. Wei, D. W. K. Ng, and J. Yuan, ‘‘NOMA for hybrid mmWave com-
munication systems with beamwidth control,’’ IEEE J. Sel. Topics Signal
Process., vol. 13, no. 3, pp. 567–583, Jun. 2019.

[6] C. Perfecto, J. Del Ser, M. I. Ashraf, M. N. Bilbao, and M. Bennis,
‘‘Beamwidth optimization in millimeter wave small cell networks with
relay nodes: A swarm intelligence approach,’’ in Proc. 22th Eur. Wireless
Conf., 2016, pp. 1–6.

[7] C. Perfecto, J. Del Ser, and M. Bennis, ‘‘Millimeter-wave V2V communi-
cations: Distributed association and beam alignment,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 9, pp. 2148–2162, Jun. 2017.

[8] Z. Zhang, C. Wang, H. Yu, M. Wang, and S. Sun, ‘‘Power optimization
assisted interference management for D2D communications in mmWave
networks,’’ IEEE Access, vol. 6, pp. 50674–50682, 2018.

[9] S. Shahsavari, M. A. A. Khojastepour, and E. Erkip, ‘‘Beam training
optimization in millimeter-wave systems under beamwidth, modulation
and coding constraints,’’ in Proc. IEEE 30th Annu. Int. Symp. Pers., Indoor
Mobile Radio Commun. (PIMRC), Sep. 2019, pp. 1–7.

[10] A. Saeed andO. Gurbuz, ‘‘Joint power and beamwidth optimization for full
duplex millimeter wave indoor wireless systems,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[11] P. Zhou, X. Fang, X. Wang, Y. Long, R. He, and X. Han, ‘‘Deep
learning-based beam management and interference coordination in
dense mmWave networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 1,
pp. 592–603, Jan. 2019.

[12] J. Gao, C. Zhong, X. Chen, H. Lin, and Z. Zhang, ‘‘Deep reinforcement
learning for joint beamwidth and power optimization in mmWave sys-
tems,’’ IEEE Commun. Lett., vol. 24, no. 10, pp. 2201–2205, Oct. 2020.

[13] R. Shafin, H. Chen, Y.-H. Nam, S. Hur, J. Park, J. Zhang, J. H. Reed,
and L. Liu, ‘‘Self-tuning sectorization: Deep reinforcement learning meets
broadcast beam optimization,’’ IEEE Trans. Wireless Commun., vol. 19,
no. 6, pp. 4038–4053, Jun. 2020.

[14] M. Tan, ‘‘Multi-agent reinforcement learning: Independent vs. cooperative
agents,’’ in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 330–337.

[15] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, ‘‘Independent reinforce-
ment learners in cooperative Markov games: A survey regarding coordina-
tion problems,’’ Knowl. Eng. Rev., vol. 27, no. 1, pp. 1–31, Feb. 2012.

[16] N. Fulda and D. Ventura, ‘‘Predicting and preventing coordination
problems in cooperative q-learning systems,’’ in Proc. IJCAI, 2007,
pp. 780–785.

[17] J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli,
and S. Whiteson, ‘‘Stabilising experience replay for deep multi-agent
reinforcement learning,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70,
Aug. 2017, pp. 1146–1155.

[18] Z. Ding, P. Fan, andH.V. Poor, ‘‘Random beamforming inmillimeter-wave
NOMA networks,’’ IEEE Access, vol. 5, pp. 7667–7681, 2017.

110612 VOLUME 9, 2021



N. Bahadori et al.: Antenna Beamwidth Optimization in Directional D2D Communication

[19] A. Thornburg, T. Bai, and R. W. Heath, Jr., ‘‘Performance analysis of
outdoor mmWave ad hoc networks,’’ IEEE Trans. Signal Process., vol. 64,
no. 15, pp. 4065–4079, Aug. 2016.

[20] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I. Kim, ‘‘Applications of deep reinforcement learning in communica-
tions and networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 4, pp. 3133–3174, 4th Quart., 2019.

[21] O. Naparstek and K. Cohen, ‘‘Deep multi-user reinforcement learning for
distributed dynamic spectrum access,’’ IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[22] H. Ye, G. Y. Li, and B.-H. F. Juang, ‘‘Deep reinforcement learning based
resource allocation for V2V communications,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[23] H. Zhang, S. Chong, X. Zhang, andN. Lin, ‘‘A deep reinforcement learning
basedD2D relay selection and power level allocation inmmWave vehicular
networks,’’ IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 416–419,
Mar. 2020.

[24] Y. Gao, Y. Xiao,M.Wu,M.Xiao, and J. Shao, ‘‘Dynamic social-aware peer
selection for cooperative relay management with D2D communications,’’
IEEE Trans. Commun., vol. 67, no. 5, pp. 3124–3139, May 2019.

[25] N. Namvar, N. Bahadori, and F. Afghah, ‘‘Context-aware D2D peer selec-
tion for load distribution in LTE networks,’’ in Proc. 49th Asilomar Conf.
Signals, Syst. Comput., Nov. 2015, pp. 464–468.

[26] T. S. Rappaport, G. R. Maccartney, M. K. Samimi, and S. Sun, ‘‘Wideband
millimeter-wave propagation measurements and channel models for future
wireless communication system design,’’ IEEE Trans. Commun., vol. 63,
no. 9, pp. 3029–3056, Sep. 2015.

[27] G. Yang and M. Xiao, ‘‘Performance analysis of millimeter-wave relay-
ing: Impacts of beamwidth and self-interference,’’ IEEE Trans. Commun.,
vol. 66, no. 2, pp. 589–600, Feb. 2018.

[28] C. Liu, M. Li, S. V. Hanly, I. B. Collings, and P.Whiting, ‘‘Millimeter wave
beam alignment: Large deviations analysis and design insights,’’ IEEE J.
Sel. Areas Commun., vol. 35, no. 7, pp. 1619–1631, Jul. 2017.

[29] C. Claus and C. Boutilier, ‘‘The dynamics of reinforcement learning in
cooperative multiagent systems,’’ in Proc. AAAI/IAAI, nos. 746–752, 1998,
p. 2.

[30] C. J. C. H. Watkins, ‘‘Learning from delayed rewards,’’ Ph.D. dissertation,
Dept. Psychol., Univ. Cambridge, Cambridge, U.K., 1989.

[31] L. Liang, H. Ye, and G. Y. Li, ‘‘Spectrum sharing in vehicular networks
based on multi-agent reinforcement learning,’’ IEEE J. Sel. Areas Com-
mun., vol. 37, no. 10, pp. 2282–2292, Oct. 2019.

[32] Y. S. Nasir and D. Guo, ‘‘Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,’’ IEEE J. Sel. Areas Com-
mun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

NILOOFAR BAHADORI received the B.Sc.
degree in electrical and electronics engineer-
ing from Isfahan University, in 2011, and the
M.Sc. degree (Hons.) in electrical and radio
frequency (RF) engineering from Semnan Uni-
versity, in 2013. She is currently pursuing the
Ph.D. degree with North Carolina A&T State
University, Greensboro, NC, USA. Her current
research interests include device-to-device (D2D)
and machine-to-machine (M2M) communication,

mmWave band communication, the Internet of Things (IoT), the applications
of machine learning in improving wireless networks, and game theory. She
was a recipient of the 2019 IEEE Wireless Telecommunications Sympo-
sium (WTS) Best Paper Award.

MAHMOUD NABIL received the B.S. and M.S.
degrees (Hons.) in computer engineering from
Cairo University, Egypt, in 2012 and 2016, respec-
tively, and the Ph.D. degree in electrical and com-
puter engineering fromTennessee TechUniversity,
Cookeville, TN, USA, in August 2019. He is cur-
rently an Assistant Professor with the Department
of Electrical and Computer Engineering, North
Carolina A&T University. He published many
journals and conferences in different prestigious

venues, such as the IEEE INTERNET OF THINGS JOURNAL, IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING, IEEE ACCESS, the International Con-
ference on Communication (ICC), the International Conference on Pattern
Recognition (ICPR), and the International Conference on Wireless Com-
munication (WCNC). His research interests include security and privacy in
smart grid, machine learning applications, vehicular ad hoc networks, and
blockchain applications.

ABDOLLAH HOMAIFAR (Member, IEEE)
received the B.S. and M.S. degrees in electrical
engineering from the State University of NewYork
at Stony Brook, in 1979 and 1980, respectively,
and the Ph.D. degree in electrical engineering
from The University of Alabama, in 1987. He is
currently the NASA Langley Distinguished Chair
Professor and the Duke Energy Eminent Professor
with the Department of Electrical and Computer
Engineering, North Carolina A&T State Univer-

sity (NCA&TSU). He is also the Director of the Autonomous Control and
Information Technology Institute, and the Testing, Evaluation, andControl of
Heterogeneous Large-Scale Systems of Autonomous Vehicles (TECHLAV),
NCA&TSU. Through his research, he has received funding in excess
of 30 million from various U.S. funding agencies. He has written more than
350 technical publications, including book chapters and journal articles and
conference papers. His current research interests include machine learning,
unmanned aerial vehicles (UAVs), testing and evaluation of autonomous
vehicles, optimization, and signal processing. He is a member of the IEEE
Control Society, Sigma Xi, Tau Beta Pi, and Eta Kapa Nu. He also serves
as an Associate Editor for the Intelligent Automation and Soft Computing
journal. He serves as a Reviewer for the IEEE TRANSACTIONS ON FUZZY

SYSTEMS, MAN, AND CYBERNETICS, and Neural Networks.

VOLUME 9, 2021 110613


